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ABSTRACT

A matrix-multiplication algorithm on a linear array using
an optimal number of processing elements is proposed. The
local storage required by the processing elements and the 11,
bandwidth required to drive the array are both constants that
are independent of the sizes of the matrices being multiplied.
The algorithm is therefore modular, that is, arbitrarily large
matrices can be multiplied on a large array built by cascad-
ing small arrays. The array is well-suited for VLSI implemen-
tation. '
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1. Introduction
Specialized array processors have been proposed as a means of handling compute-

bound problems in a cost-effective and efficient manner [4,5,81. These array processors

are typically made up of simple, identical processing elements (which we will refer to as

cells from now on) that operate in synchrony. Several array structures have been pro-

posed that include linear arrays, rectangular arrays and hexagonal arrays. Simplicity

and regularity of linear, rectangular and hexagonal array processors render them suit-

able for VLSI implementation. High performance is achieved by extensive use of pipelin-
4

ing and multiprocessing. In a typical application, such arrays would be attached as peri-

pheral devices to a host computer which inserts input values into them and extracts out-

put values from them.

In practice, linear arrays are more attractive than rectangular or hexagonal arrays

for several reasons. Among them are the following: Linear arrays have bounded I/O

requirements [(]. In a wafer containing faulty cells, a large percentage of non-faulty cells

can be efficiently reconfigured into a linear array with constant wire length between

adjacent cells in the linear array [7]. Synchronization between cells in a linear array can

be achieved by a simple global clock whose rate is independent of the size of the array

S[2].

Linear-array algorithms for dense matrix multiplication have appeared in [1,3,8].

These algorithms require O(n) ' cells and (n 2) time steps to multiply two nXn

matrices. However, these algorithms require that each cell in the linear array must have

O(n) words of local storage. Hence, the maximum storage in the cells imposes an upper

limit on the size of the matrices that can be multiplied. Consequently, these matrix mul-

tiplication algorithms are not modularly expandable, that is, matrices larger than nXn

.n) - () if there exsts a positive constut c for which An) < cn

mq

----------------------------



cannot be multiplied by cascading several such linear arrays into one large array. To do

this, the local storage in each of the cells would have to be increased.

In this paper we present a novel linear-array algorithm for multiplying two nXn

dense matrices wherein the local storage required by each cell in the linear array is a

conatant that is independent of the sizes of the matrices being multiplied.Therefore the

algorithm is modular, that is, arbitrarily large matrices can be multiplied by extending

the linear array. The algorithm requires 0(n2) cells and the multiplication is done in

0(n 2) steps. We will also show that 0(n 2) cells used by the algorithm is asymptotically

optimal. The time required to perform the multiplication (O(n2 )) is also asymptotically

optimal as at least n2 time steps are required to insert the elements into and retreive the

results from the array through a constant number of I/0 ports.

The rest of this paper is organized as follows. In Section 2, we describe the cell and

the linear array model that we will be using to describe the algorithm. In Section 3, we

present the algorithm to multiply two nX n matrices and illustrate it by an example. In

* Section 4, a proof of the algorithm is provided and in Section 5 we show that 0(n2) cells

used by the algorithm is optimal.

, 2. Cell and Linear Array Model

We begin with a description of the cell model. Each cell ( see Figure 2.1 ) is capa-

, ble of performing a matrix multiplication step (i.e., a multiplication and an addition) in

every clock cycle.

!A!
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10 and 1* are the two control input ports and 00 and 0* are the corre.-ponding

control output ports. In every cycle, the control signal at I* is transmitted unchanged

to 0* and the control signal at 14b is transmitted to 0* through a buffer BUF 2 that

delays it by one cycle. At every clock cycle, 1$0 has one of the following three control

signals: *1, 02 and "don't-care". (A two-bit wide 10 is therefore adequate.) Similarly,

at every clock cycle, 1* has one of the following three control signals: 'P1, 4'2 and
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"don't-care".

IA, [B and IC are the input data ports for the elements of the matrices A, B and C

respectively where C=AXB. The input data value at port IA is accompanied by a tag

bit. We will denote the input data value at port IA as activc if the tag bit is "on", else

'we will refer to it as being inactive. In every clock cycle the DEC unit ( read as "decod-

ing unit" ) strips the tag from the input value at IA. T denotes the tag bit and D the

data.

The "dashed" lines are the control signals from the control unit to the adder, mul-

tiplier and the MOD unit (read as "modifying unit" ). In every clock cycle, the MOD

unit modifies the tag bit of the input value at IA depending on the control signal from

the control unit. The modified tag bit from MOD is appended to the data at D in the

ENC unit (read as "encoding unit").

BUF 1 and BUF 2 are two buffers whose sole purpose is to delay the input data at

IB and the input control signal at 10 respectively by one cycle.

We now describe the program executed by the cell in every cycle. At the begin-

ning of a cycle, let a, b, c denote the data at ports IA, IB and IC respectively. Let t9

denote the tag bit accompanying a Let cl and c2 be the two input control signals at 10

and It respectively. The cell executes the following steps sequentially.

insert contents of BUFt and BUF 2 into output ports OB and 0$ respectively;
ifc 1 = - 4 1 andc 2 -* 1then begin

set t. to "on" (i.e., activate a

go to exitl;
end;

ifc C1  2 andc 2 - * 2
then begin

set t. to "off"' (i.e., deactivate a);
go to exitl;

ft. . . .. . . . - o • • •



end;
if a is inactive then go to exitl;
if a is active then go to exit2;
exitl: insert c in output port OC;
ei go to exit;
exit2: insert c+ab in output port OC;
exit: insert output of ENC in output port OA;

insert 6 into BUFI; insert cl and c2 into BUF 2 and Ot respectively.

In every cycle, a cell either activates the data at IA, or deactivates the data at IA

or computes a matrix multiplication step provided the data at IA is active. The cell

does not modify the tag bit when the control signals are "don't-care" control signals.

The linear array is comprised of cells indexed from 1 to m where m depends on the

size of the matrices being multiplied. Figure 2.2 illustrates the linear array.

* .
IA-.0 1 2 A'wb . rnOAIC01t I "C m -O

Figure 2.2

For any cell i in the linear array, its output ports 0, OA and OB are connected to

the input ports 10, IA and IB respectively of cell i41. Also, its output ports 0* and

OC are connected to the input ports 1' and IC respectively of cell i-I.

I,
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External control signals are inserted at 10 and I of cell I and cell in respectively.

*,- The entries of matrix A are inserted at IA of cell 1. The tags accompanying each of these

entries are set to "off" (i.e., the entries of matrix A are inactive when they enter the

array). The entries of matrix B are inserted at IB of cell I and thoee of matrix C are

inserted at IC of cell in.

3. Modular Matrix Multiplication Algorithm

We introduce the following notation to describe the algorithm. Let aij, bi' cii

- denote the ijt" entry in matrices A, B and C respectively. Elements ai, and a. in matrix

A are said to be in the same diagonal if i+j=p+q. The kth diagonal denotes the diagonal

containing aij where i+j-l~k.

The entries of matrix A are inserted in the following order: entries in the 1 diago-

nal, followed by entries in the 2ad diagonal, .., followed by entries in the (2n-l)' t diago-

nal. Within any diagonal, the entries are inserted in increasing order of their column

indices.

The entries of matrices B and C are inserted in the following order. entries in row

-. 1, entries in row 2, .., entries in row n. Within any row of matrix B the entries are

inserted in decreasing order of their column indices. Within any row of matrix C the

entries are inserted in increasing order of their column indices.

Recall that control signals pass through a cell without any change. A control signal

at 10 of a cell is transmitted unchanged to O of the same cell at the end of two cycles

and a control signal at I* of a cell is transmitted unchanged to 0* at the end of one

cycle. At each clock cycle a new control signal (either *0s 42, or "don't-care") is inserted

at I* of cell 1. In the sequence of control signals inserted at I, let 01 ( 0j ) denote the

1jth 4 ( 2 ) signal (we assume that the indexing begins from I ). Similarly, in the

.. *:'.' a- ,'a a
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sequence of control signals inserted at 14, let 4 ( ' ) denote the ith *1 (*2 ) signal.

The number m of cells required by the algorithm is dependent on whether n is

odd or even. Define r as follows: If n is odd, let r be - and if n is even let r be - ( we
2 2

assume n>2 ). Let to denote the time at which 41' is inserted in the array.

Algorithm ( for odd n)

The number m of cells required by the algorithm for odd n is (n-lXr+l)+ n 2+2

and the algorithm is comprised of the following steps.

1. Insert %j into IA of cell I at time to+2+(n-1)(n-r)+n(i+j-2)+(j-1);

2. Insert bi into IB of cell 1 at time to+1+3(r+lXi-lHj-1);

3. Insert 0 into IC of cell m at time t0+2i3n(i-1)+2(j-1);

4. Insert $j into 1$ of cell I at time to+2+3(r+lXj-1);

5. Insert dj into 1b of cell 1 at time to-(n-1)+3(r+lXj-1);

6. Insert 4 into I*' of cell m at time to+3n(i-1);

7. Insert 4, into 1' of cell m at time to+2n+2+3n(i-1);

8. For all cycles between to-(n-lXr+l)-na-1 and to+Sn2-2n+l do the following:

a. if no entry of matrix A is being inserted into IA of cell 1 then insert 0;

b. if no valid control signals are being inserted into 1$ and 14 of cell I and cell m

respectively then insert "don't-care" control signals.

The number of cells required by the algorithm for even n is 3n(r+l). The algo-
°4

rithm is similar t3 the algorithm for odd n except steps 1 and 8. For even n, aij is

6inserted at time t0+l+(n-r)(n-l)+(i+j-2 n-l)+(j-1) in step 1 and step 8 is carried out

between cycles to-3rn(r+l)-i and to+l+(n-1)(3n+r+5).



ia

Example: We illustrate the algorithm by multiplying two 3X3 matrices. n-3 and so

the number of cells required is 15, that is, m-15. Let t0 f14.

Tables 1, 2 and 3 show the times at which the elements in matrices A, B and C

respectively are inserted into the array.

1 2 3 1 2 3 1 2 3

1 20 24 28 1 15 14 13 1 18 18 20
2 23 27 31 2 21 201419 2 25 27 29
3 F26 30'34 3 27 26 25 3 34 36 38

Table 1 Table 2 Table 3

In Tables 1, 2 and 3 the entry in the it'k row and jth column is the time at which

the (ij)th element in matrices A, B and C respectively is inserted into the array.

Entries in Table 4 below indicate the times at which the control signals are

inserted. The entry 24 in the 3rd column of the 2ad row is the time at which 42 is

inserted into the port I* of cell 1.

'C-...-- .-. ,-.... -.... -... ... ....... .;.; -............-. ,-".--.,...-'-.....- -



1 2 3

4 16 22 28

4$2 12 18 24

~' 14 23 32

'~' 2 31401

Table 4

Tables 5 and 8 give the times and the cells where *1' meets and 'l4s meets 0d

respectively.

* 4'1 <aI1,5,24> <a1 2,3,28> < a13,1,28 >

*I- <a~l,8,30> <a22,0,32> < a23,4,34 >

Table 5

2's <a 1 ,9,28> <al 2,7,30> <335,32>

U Table2r al1,4 2,1,6> <a383
3F 3,540> a21,2 4

.~ ~ <. a331 1 .a a **,* %~*a a % ~ * ~ *a~'~ *' * . * . . * 7. .

* ~ ~ ~ ~ ~ ~ ~ ~ ~ al 6*U .*.?. * * . * *, **
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The entry in the ith row and jth column of Table 5 is a 3-tuple <aj,x,y> where x is

the cell where $J and ',' meet and y is the time at which they meet at x. At the same

time aij also appears at the port IA of x. Consequently aij is activated in x at time y.

Similarly the entry in the ith row and jth column of Table 8 gives the time and cell

wherein aij gets deactivated.

We will trace the computation of c12 as an illustration. The trace is depicted in

Table 7.

t index IA IB

18 15 0
19 14 0
20 13 0
21 12 0
22 11 0
23 10 0
24 9 0
..25 8 0

28 7 all* b12
4 27 8 0

28 5 a12* b22
S. 29 4 a .% I'

30 3 a3* b-
32 

a 3 2 

"

32 1

Table 7

-1

Consider any ith row in Table 7. The I'" column in the i' row is the time at which

c12 appears at the input port IC of the ceil whose index appears in the 2 a column. The

entries in the 3 rd and 4 th columns are the elements at the cell's IA and IB ports at that

time. For instance, the 9th row indicates that C12 appears at the input port IC of cell 7 at

U

o-C .. . . ' .• o-. . , - - - ". .. • - .- . % - -. - -. , .% % ' %, % * * " . . .. - .

r' :.',.,. . .:,. ,. ,: ,, . .. ", : * .... . .,, ,=.,,..,.=.,,t " r , '.. - *. C -,*,= "- =
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time 28 and all and b12 are the elements at the ports IA and IB respectively of cell 7 at

time 26.

The "starred" entries in the 3 column are used to indicate that the corresponding

entries are active. For instance, all is active when it appears at the input port 1A of cell

7 at time 28. On the other hand as, is inactive when it appears at the port IA of cell 4 at

time 29.

From Table 7 it cin be seen that c12 gets updated only in cells 7, 5 and 3. In any

other cell it is not updated as either it encounters a 0 or an inactive element of matrix A

at the cell's IA port.

4. Proof of Correctness

We now establish the correctness of the algorithm. We will only prove this for

odd n as the proof for even n is similar. Let cii denote the element 0 inserted at IC of

cell m at time t0+2+3n(i-L)-t-2(j-1) in step 3 of the algorithm.

*..We will say that the elements of the three matrices and the control signals meet at

a cell whenever they appear at the cell's input ports in the same cycle. (For instance,

a,, and bj meet at cell h if aqi and b8j appear at the input ports IA and lB respectively

of cell h in the same cycle.)

Each cell in the linear array has five 1/O ports ( three for inserting and extracting

elements of matrices A, B and C and two for inserting and extracting '01, 42 and *1, *2

control signals ). In the following Lemma we show that these 1/O ports are never "over-

loaded " by showing that distinct elements can never appear simutaneously at the same

input port of any cell in the linear array.

Lemma 4.1: Distinct elements of matrices A, B and C do not simultaneously reach the

• -. • .-,.-,"
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* input ports IA, [B and IC of any cell in the linear array. Distinct 4l, 02 control signals

do not simultaneously reach the input port I4 of any cell, and distinct *1, *2 control

signals also do not simultaneously reach the iLput port I* of any cell.

Proof: We will show that distinct elements of matrix A do not simultaneously reach

the input port IA of any cell and the proof will be similar for elements of matrix B and

matrix C as well as for the control signals *I, $2, *1 and *2.

Let aij and a., be two distinct elements that appear simultaneously at the input

port of cell s. The time taken by aij to reach the input port of s is

[to+2+(n-lXn-r)+n(i+j-2)+(j-1) + (s}. The expression within [j is the time at which

ai is inserted into the array and the expression within ( } is the time taken by aii to

reach s after it is inserted. Similarly, the time taken by a., to reach s is

t 0+2+(n-iXn-r)+n(p+q-2)+(q-1) +is]. Equating these two times and simplifying we

* obtain (i-p+j-q)J- - . Now the left-hand-side is an integer and the right-hand-side is
n

a fraction since 0 < i-ql < (n-1). So for equality to hold j==q and i-p. So aij and a.,

are not distinct as assumed -- a contradiction.

Recall that a cell performs a matrix multiplication step only if th.! element at its IA

.. port is active. Hence, for any cii to be correctly updated it must meet an active ai, (Vs

.<s<n). We next identify the cells in which a%. is active.

Lemma 4.2: Let p=n(i-l)+(r+l)(n-s)+l and q-u(i-l)+(r+lXn-s)+n+2. If a,. is active

in a cell y then p <y <q.

Proof: aj, is activated whenever it meets a *1 and *1 control signal simultaneously. Let

h be the cell index where aj, meets *I and *19 simultaneously. Let t(a,), t(*f) and

-..
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t(*1
s) denote the times at which am, Olf and *1s respectively are inserted into the array.

Let h(a,,), h(Of) and h(* 19) denote the time taken by ai,, Of and * respectively to
reach h after being inserted into the array. Now a , and I' meet at h. Hence

~as)+h(aj )-t(4 )+h($, )----t(4 1 )+h(4s). From the algorithm we obtain the following:

(1) t(a.)=to+2+(n-lXn-r)+n(i+s-2)+(s-1) and h(ai,)=h-1.

(2) t(-)=-t0+2+3(r+lXf-1) and h(O-)=2(h-1) (The multiplication factor 2 appears in

h(O ) as *1 control signals travel at a velocity of - a cell per clock cycle).
2

(3) t(*f)=t 0 +3n(g-1) and h(4rI)=m-h (h is subtracted from m in h(* 1s) as I1 control

signals travel from cell m to cell 1).

Now t(44)+h( 1f)=t(* )+h(*11) and so from (2) and (3) we can obtain hfin(g-

1)+(r+l)n-f)+l. Also t(a)+h(aj)=t($!)+h(Ot) and so from (1) and (2) we can obtain

(n-i )(n-r)+n(i- l)+(n+ lXs-1)=3(r+1 Xf- l)+h-I which on substituting h-n(g- l)+(r+ 1 Xn-

f)+i simplifies to n(s-f-g+i)-f-s. Since 0<f-s9_:n-1, so for equality to hold f-s and

g-i. So *I - Ol" and 41 - *i and h-p. So aj, g& Meets fl' and 4'. It meets them

at cell p. Hence aq. is activated in cell p.

We can similarly show that a. gift meets * and *'I and it meets them at cell q

and hence aj, is deactivated in cell q. Consequently, a is active only in a cell y where

p_5y:5q.

Having identified the cells in which aj, is active, we will now establish that c,1

always meets an active a . and baj (Vsl <s~n) in the same cell.

Lemma 4.3 Let p-n(i-l)+(r+l)n-s)+l and x-p+j. Then, for any ij,s (1 < ij,s < n),
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1. aj. b, and cii will only meet at cell x, and

2. a. is active then.

Proof: Let ai,, bj and cij meet at cell h. Let t(ai,), t(b,j) and t(c1,) denote the time at

which a , b,j' and cij respectively are inserted into the array. Let htaw), h(bj) and h(cj)

denote the time taken by a, b3j, and cij respectively to reach cell h after being inserted

into the array. Equating t(as)+h(a,) to t(b,j)+h(bj) we can obtain h-x-n(i-

1)+(r+ 1 ) n-s)+1 +j.

Now ai,, bj, and cii will pass through every cell indexed from I to m. We will first

show that they pass through h by showing that 1 < h <m. The minimum value of h is

2 which is obtained when i-j=1 and s-n. Clearly, 2 > 1 and hence h>1. The max-

imum value of h is n +(n-lXr+l)+l which is obtained when i-j-n and s-1. Clearly

n2+(n-lXr+l)+l<m and hence h < m.

1. Hence aj,, bj and cij meet at cell x. Lastly, cell x is the only cell where they will

meet as cij travels in a direction opposite to that of a, and bsj.

2. That a3, is active follows immediately from Lemma 4.2.

From Lemma 4.3 we can assert that cijz aisbj. To assert that cijj , abbj we

must ensure that if cij does not meet an active a in a cell then either it encounters an

inactive element of matrix A or the element 0 at the cell's IA port.

Lemma 4.4: If an active aj, meets c., then u-i.

Proof: Let p-n(i-l)+(r+lXn-s)+l and q-n(i-l)+(r+i(n-s)+n+2. By Lemma 4.2 a3, is

active in any cell y such that p y < q.
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Let t(ai,), t~c,,,) respectively denote the times at which aj, and c.~, are inserted into

the array. Let p(a,,) and qiaij) denote the times taken by a,. t~o reach cell p and cell q

C respectively. Let y(c.,) denote the time taken by c, to reach cell y after being inserted

into the array. c,, meets an active a. and hence t(a.)+p(a5) 5 t(c.,)+y(c.,) :5

Let y-p+A. As q-pinn+l and p :5y 0qs 0 < A < n+1. Now

t(ce8 )=to+2+3ri(u-l)+2(v-1) and y(c.,)=m-p-A. Since t(aj)+p(aj) :5 t(c.,)+y(c.,) we

can obtain:

A :5 3n(u-i)+2v ...(a)

Also as tqc.,+y(cj~ :5 t(aj,)+q(aj) we obtain:

A > 3n(u-i)+2v-n-l ...(b)

A > 0 and so 3n(u-i) -2v. For u<i this inequality does not hold as the minimum value

of -2v is -2n and the maximum value of 3n(u-i) is -3n when u-i-1.

So U> i...(c)

A < n+1I and so 3n(u-i)+2v-n-1 5<n+1 which reduces to 3u(u-i) :5 2(n+l-v). For

u>i this inequality does not hold as the maximum value of 2(n+1-v) is 2n when v-i.

The minimum value of 3u(u-i) is 3n when u>i and u-i-i.

So u< i...(d)

From (c) and (d), ii=i.

V Lemm& 4.5: In any cell y in the linear array and for any ij (I < ij :5 n) cii always

encounters an element of matrix A or a 0) at the IA port of cell y.

Proof: Let t(c~j) denote the time when c1j is inserted into the array and yjcij) denote the

-LI tL C



time taken to reach cell y after insertion. Now tqcij)-to+2+3n(i-l)+2(j-1) and

y(c,)-m-y. The element encountered by cii at the IA port of cell y must have been

inserted into the array at cell 1 at time z-tqcj)+y(cij)-y+1. Recall from step 8 of the

algorithm that either the element 0 or an element of matrix A is inserted into the array

between cycles to-(n-lXn+l)-n2 -1 and t0 +5n 2-2n+l. If we show that

to-(n-l)(r+l)-n 2'- < z < to+5n2-2n+l then clearly the element inserted into the array

at the IA port of cell 1 is either the element 0 or the element of matrix A.

Now z-t(cij)+y(cii)-y+ 1

-to+2+3n(i-l)+2(j-l)+n 2+2+(n-1 Xr+l)-2y+l

It can be easily seen from the expression above that z is minimum when i and j are

minimum and y is maximum. i-I and j-l are the minimum values for i and j and

y=mz=(n-Xr+l)+n 2 is the maximum value of y. Similarly, z is maximum when i=n,

j-n and y=1. Let z. and zmi. denote the maximum and minimum z respectively. It

can be easily shown that zi > t0-(n-IXr+l)-n 2-1 and zm. 5 t0+5n 2-2n+l.

We can now assert that cj is correctly computed when it exits the array.

Theorem 4.1: For any ij (1 :5 ij 5 n), the value of cii is E aisbj when it exits the
3=1

array.

Proof: By Lemma 4.5 cij will either meet an element of matrix A or the element 0 at

any cell.

1. By Lemma 4.3 it will meet aj. and bj in the same cell.

2. By Lemma 4.4 if it meets an element a., of matrix A and u7i then a., is inactive.

C- ,'-'. -'-T-i ' . . , -...-. . . . . ._. - -, .. -. . .. , .x . o, -, , .. ,. ;,, ., - --
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From (1) and (2) the Theorem follows.

5. Proof of Optimality

We will now establish that the number of cells used by the modular linear-array

algorithm is asymptotically optimal. We establish this result under the following assump-

*. tions:

1. Any special-purpose machine (like a linear array) that multiplies matrices A and B

must compute aikbkj ( Vi, VJ and Vk iI :ij,k<n).

2. The special-purpose machine has a constant number of I/O ports.

3. The elements of the matrices A, B and C are inserted into the special-purpose

marhine =Ly g= through the input ports.

Under these assumptions we will establish that fl(n) 2 is a lower bound on the

storage that is required by any special-purpose machine that multiplies two nXn

matrices. We obtain this bound by formulating the computation of matrix multiplication

as a game played with tokens on an undirected graph constructed as follows:

Let Gk=(Vk, Ek), k-l,..,n where

Vk=(fik, hki I i-l,..n and j-l,..,n} and

Ek={ <fik, hkj> I i=l,..,n and j-,..,n}

The rules of the game are as follows:

1. A token is placed on fik (hkj) when ak (bk) is inserted into the machine.

2. Updating c,3 ( by adding aikbkj to ci, for some k) results in removing the edge

<ik, hkj> from Gk.

) (n2 ) ii &bell exists positive co..t..t c- fo r nwhich - *cr
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3. An edge is removable only if there are tokens at both end vertices.

4. A token from a vertex is removable only if all the edges incident on the vertex are

removable. When a token from a vertex is removed then all the incident edges on

the vertex are deleted. (The token will eventually leave the machine and will never

reenter.)

We will assume that each token occupies unit storage (0(1)). We also assume that a

partially updated cij also occupies unit storage. (At any instant of time cij is partially

updated if there exists some k (I <k<n) such that aikbkj either has not been computed

and/or added to cii by that time instant.)

Let xk be the earliest time at which the first token in Gk is removable and let Yk be

the earliest time at which all the tokens in Gk are removable. Since only a constant

number of tokens enter the machine at any time, by choosing n sufficiently large, we can

ensure that Vk (I<k<n) xk<Yk. Vk (l<k<n), let lk=[xk, ykJ denote the time interval

between and including xk and Yk.

Lemma 5.1: At any time t such that xk:t<yk, there are at least n tokens in Gk.

Proof: Without any loss of generality, let the first (or one of the first if there are more

than one) token(s) that can be removed from Gk be the one on vertex fnk. At tj - xk,

then, there must be tokens on all hkj (l<j~n). We claim that no token on any hki

will be removable at any t (xk:t<Yk).

Assume this is not the case, and at t <Yk, let hki be the first vertex (or one of the

first vertices) from which a token is removable. This implies that there must be tokens

on sU vertices fjk that still have incident edges. This means that all the edges still

remaining in Gk are removable, and consequently all the remaining tokens in Gk are

k. .... S*..v.
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removable at time t. But then tryk - a contradiction. Hence no token on any hkJ is

removable at any time t (Xk t<yk). Each hkj has a token and hence the Lemma.

Lemma 6.2: Let m<n. For any i, if t>yi and Gi has m tokens then at least IL edges
2

must have been deleted from Gi.

Proof: There are m tokens in Gi. Since tyi, the absence of a token on a vertex means

that all the n edges incident on the vertex have been deleted. (At t-yi, all edges in Gi

are removable). The number of absent tokens-2n-m which is greater than n as m<n.

Now one edge is in common with at most two vertices. Thus the 2n-m absent tokens
-2

result in at least 2- deleted edges.
-' 2

Let us impose an ordering on the sets !k such that xi x .. _5xj. and let r -

(ik I yk5x,.) and A-Ik I Yk>X'.

Theorem 5.1: Any matrix-multiplication machine requires O2(n) storage.

Proof: Since IrI+IA-n, either In - or JAI > -.

Case 1: IAI > - (see Figure 5.1)
.12

.%5
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,X __'Y2

n $, yin

Figure 5.1

At t-x. all the intervals in A satisfy Lemma 5.1. Hence at t=xj., there are at least

n(-!) tokens in the machine. So the storage required is fl(n2).
2

Case e Irl __ (see Figure 5.2)

2 2 ,1 Y,

" X2v- ' Y2

-. x= -- ~ Y4

"i; Yin

Figure 5"2

At t--xi, either all Gk, such that IkEA, have n tokens on them, or at least one of them

has less than n tokens. If every Gk has n tokens then the storage required is again

fl(n). If any one, say Gr, has less then n tokens then by Lemma 5.2 Gr must have

released at least -!L edges. Now each released edge corresponds to a partially updated
2

cj. None of the cj's could have left the machine as all of them are finally updated only

n2

at t>xi. Thus at any time t (yk_(t<xi,) there are at least -2- partially updated cii's in
2I

the machine. The case yk-xi. is covered by assumption 2 which precludes the possibil-

Oo.

.5..,'. ....** '."," ... ,.,,',,.,*'*' ".'',*, %.*,,, "''.",,,S ,e'.a . ..... ,'.;.',,:-,i'.'-"...... ,-.d
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ity of all these cii's being instantaneously updated and leaving the machine. So the

storage required for the partially updated cjj's must be 1(n 2).

Theorem 5.2: 0(n2) cells used by the modular linear-array algorithm is optimal.

.Proof: From Theorem 5.1 it follows that the modular linear-array algorithm requires

01(n 2) storage. Now each cell in the linear array has constant storage and hence the

Theorem. -"

Conclusion

We have described a novel linear-array matrix multiplication algorithm that uses

an asymptotically optimal number of cells. The cells used in the array are simple requir-

ing a constant amount of local storage that is independent of the sizes of the matrices

being multiplied. The cells can be built using off-the-shelf components. The array can be

modularly expanded to accomodate arbitrary matrix sizes by adding more of these sim-

ple cells.
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